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SUMMARY

A method for solvingthe Navier-Stokesequationsbased on splittingthe
velocityvector into its rotationaland irrotationalparts has recentlybeen
appliedsuccessfullyto internalflow computations. In this paper, the appli-
cabilityof the method to external flows is examinedby studyingseveralmodel
problems. The model problemsare those of laminarand turbulentincompressible
flow past a semi-infiniteflat plate and laminarincompressibleflow past a
finite flat plate. For these problems,the procedureaccuratelyreproducesthe
known solutionsand is computationallyvery efficienteven at high Reynolds
numbers. Computationalaspectsof the method are discussedalong with the
possibilityof using the procedureto retrofita viscouscapabilityinto
existingpotential-flowcodes.

INTRODUCTION

In recent years techniquesfor predictingthe viscous flows over airfoils
have been developedbased on the numericalsolutionof the Navier-Stokesequa-
tions (ref.]). Although such solutionsare useful,their speed of convergence
is limitedby the speed at which the basic numericalscheme can solve the Euler
equations. For example,the method of Beam and Warming (ref.2) solves the
full Navier-Stokesequationsin 20 percentmore time than the same method takes
for the Euler equations. An alternativeto the direct solutionof the Navier-
Stokes equationshas recentlybeen proposedby Dodge (ref.3). Accordingto
Dodge, the velocityvector is split into its rotationaland irrotationalcompo-
nents. This split, coupledwith an appropriateidentificationof the pressure,
leads to a modified potentialequationfor the pressurefield and a set of
transportequationsfor the rotationalcomponentof the velocity. The poten-
tial equationand the transportequationsare then solved separately,with
their couplingaccountedfor by iteration. The advantageof this method is
that all the well-developedtechnologyfor solvingthe potentialequationcan
be used for solvingthe pressure-fieldequation. Such a procedurecan thus
take advantageof the more rapid solutionproceduresavailablefor the poten-
tial equationcomparedwith the Euler equations.

The techniqueproposed by Dodge has primarilybeen applied to internal
flows (ref. 3). Consequently,an investigationwas startedto examine the
suitabilityof the procedurefor solvingexternal flows with the goal of
calculatingviscousflow fields about airfoils.

In the current investigation,severalaspectsof the procedureused by
Dodge are investigated. The first questionaddressedin the currentwork is
whether the procedureaccuratelyrecoversknown solutionsto the Navier-Stokes
equationsfor laminarflows. Secondly,the suitabilityof the procedurefor
predictingturbulentflows is examined. Both of these questionsare studiedby
calculatinghigh Reynolds number flow over a semi-infiniteflat plate. It is
recognizedthat the semi-infiniteplate problem can be handledwell by conven-



tional boundary-layertheory. The final phase of the study is therefore
involvedwith solutionof a problemthat cannot be treatedby the usual
boundary-layermethods. The problemof interestin this report is the
detailedpredictionof the laminar flow in the vicinityof the trailingedge
of a finite flat plate. Computedresultsfor all three problemsstudiedare
comparedwith known solutions.

Use of trade names or names of manufacturersin this reportdoes not con-
stitutean officialendorsementof such productsor manufacturers,either
expressedor implied,by the NationalAeronauticsand Space Administration.

SYMBOLS

Ax constantin x-directioncoordinatestretch

Ay constant in y-directioncoordinatestretch

B coordinatescale factor (seeeq. (]3))

C constant in coordinatetransformation

Cf skin-frictioncoefficient

F reciprocalof mesh intervalin x-direction

G reciprocalof mesh intervalin y-direction

I numberof iterationsto convergence

M maximummesh incrementcounterin x-direction

N maximummesh incrementcounter in y-direction

P pressure coefficientwith triple-deckscaling

p pressure

R Reynolds numberbased on free-streamconditions

Rx Reynolds number based on x

r residualof continuityequation

U x-componentof total velocityvector with triple-deckscaling

u x-componentof total velocityvector

ur x-componentof rotationalpart of velocity vector

V total velocity
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Vr rotationalpart of velocity

v y-componentof total velocityvector

vr y-componentof rotationalpart of velocityvector

x longitudinalcoordinate

x] longitudinalcoordinatewhen mesh incrementcounteris 1

stretchedx-coordinate

xl stretchedx-coordinatewhen mesh incrementcounteris ]

y normal coordinate

stretchedy-coordinate

u grid stretchingparameter

8,8B constantsin free-streampotentialfunction

boundary-layerthickness

eddy viscosity

normal coordinatein Gortler transformation

_I ratio of local wall shear to local Blasius theorywall shear

longitudinalcoordinatein Gortler transformation

p density

irrotationalvelocitypotential

@ perturbationirrotationalvelocitypotential

_ unperturbedirrotationalvelocitypotential

X longitudinalcoordinatewith triple-deckscaling

Subscripts:

m mesh incrementcounterin x-direction

n mesh incrementcounterin y-direction

te trailing-edgelocation

x,_ differentiationin x-direction



y,T] differentiationin y-direction

free-streamconditions

Superscripts:

I global iterationcounter

' turbulentfluctuatingquantity

. vector quantity

PROBLEMFORMULATION

GoverningEquations

In the presentwork the governingequationsare the incompressibleNavier-
Stokes equations. These equationsmay be writtenas

• v=o (1)

(_• %'_: -_p- R-_×_x_ (2)

where lengthshave been nondimensionalizedby a referencelength L, velocity
1

by the free-stream velocity V_, and pressure by --pV_2. The velocity vector
2

V is split into rotationaland irrotationalcomponentsaccordingto the
relation

5=_ +Vr (3)

Further, the pressure is defined,as discussedin reference3, in terms of the
irrotationalcomponentas

]

p = C - -V_ • V_ (4)
2

where C is an arbitraryconstant. Substitutionof equations (3) and (4) into
equations (I) and (2)gives

v2_:-i_ • ;r
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. .. [ . _]. .(vr "v)w + (_ + Vr) . Vr=__-I_×_ × Vr

For turbulentflow in two dimensions,these equationscan be time averaged
and expanded to give

#xx + #yy = -(Ur)x - (Vr)y (5)

Ur_xx + Vr#xy + (_x + Ur)(Ur)x+ (_y + Vr)(Ur)y= R-II(Ur)yy+ (?2_)xI - (u'V')y

(6)

Ur_xy+Vr_yy+ (_x+Ur)(Vr)x+ (_y+Vr)(Vr)y=R-1[(Vr)yy+ (V2_)y] (V)

The only componentof the Reynolds stress tensor retainedis the u'v' usually
retainedin boundary-layertheory. Streamwisediffusionis neglected.

In the currentwork, with streamwisediffusionneglected,equations (6)
and (7) are parabolic. However, equation (5), the pressure equation,still
retainsits ellipticcharacter. Note that this systemof equationshas more
generalitythan the usual boundary-layerequations;it admits a normal pressure
gradient in the viscouslayer. It is also more generalthan the usual "parabo-
lized"Navier-Stokesequations;it does not requirea split of the pressure
into a known marchingdirectionpressure gradientand a viscousperturbation
pressure field. (See, e.g., ref. 4.)

BoundaryConditions

As indicatedin the Introduction,the problemof interestin the current
investigationis laminarand turbulentflow over semi-infiniteand finite flat
plates. The computationaldomain consideredand the associatedboundarycondi-
tions on the primitivevariablesare shown in figure I. The leadingedge of
the plate was excludedfrom the computationaldomain. Therefore,techniques
for dealingwith the leading-edgesingularitydid not have to be considered
(ref. 5). This subject is left to a future investigation. The inflowboundary
of the computationaldomain is taken sufficientlyfar downstreamof the plate
leadingedge that effectsof the plate leading-edgesingularityhave vanished
and the flow is well describedby the Blasius boundary-layerprofile with an
undisturbedexternal flow (whichis not preciselyaccurate,but is accurateto
Rx-I/2 for large enough distancesfrom the leadingedge).



The boundaryconditionson _ and Vr are obtained from the boundary
conditionson the primitivevariablesas follows:

Wall boundary

Ur = -_x _ (y = 0, x < Xte)
Vr _y =0j

Wake centerlineboundary

(Ur)y vr

2 (Y = 0, x > Xte)
_y = 0 J

Since the flow is irrotationaloutside the boundary layer, the rotationalcom-
ponent of velocitymust vanishoutside the boundarylayer.

y . _ boundary

ur = vr = u _ (y. _, I < x < co)

J
where #_ representssome as yet unspecifiedpotentialfunction.

x + _ boundary

= @_ (x. _, 0 < y < _)

No boundaryconditionsare requiredon ur and vr as x . _, since the
transportequationsgoverningtheir evolutionare parabolic.

The boundaryconditionsalong the line x = ] pose a particularproblem
for the presentmethod, since the splittingof the known total velocity vector
into rotationaland irrotationalcomponentsis not unique. The initialchoice
made in the present investigationwas the Blasiusvelocityprofileand zero
longitudinalpressure gradient.

Inflow boundarycondition

ur = u- (@a)x (x = I, 0 < y < _) (8a)
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vr = v - (@Jy (x = ], 0 < y < _) (8b)

_x = 0 (x = I, 0 < y =<_) (8c)

However, computationalresultsforcedmodificationto these conditionswhich
are discussedin some detail in a subsequentsection.

TurbulenceModel

The Reynolds stress term in equation (6) is modeledwith the usual eddy
viscosityassumption;that is,

_u
-uWv t = _-

8y

Substitutionof the x-componentof equation (3) into the precedingequation
gives

-u'v' = E(Ur)y+ €@xy (9)

Substitutionof equation (9) into equation (6) leaves the specificationof
to close the systemof governingequations. In the presentwork, a two-layer
eddy viscosityformulationis used, as discussedby Cebeci and Smith (ref.6).
In the inner region the formulationis based on Prandtl'smixing-lengthmodel
along with the Van Driest dampingfactor. In the outer region,Clauser's
velocitydefect model is used. No normal intermittencyis used.

SOLUTIONOF GOVERNINGEQUATIONS

GeneralSolutionStrategy

In the presentwork, the governingequations,equations (5) to (7), are
solvedwith a finite-differenceprocedure. The generalstrategyof the
solution,as proposed in reference3, is to solve equation (5) separatelyfrom
equations (6) and (7),and to accountfor their couplingiteratively. This
procedureallows the use of the technologyavailablefor solvingthe potential
equation,thus treatingthe pressure-fieldsolutionas an ellipticproblem,
while still solvingthe viscousportionof the flow field with a marching
calculation.

In practice,the solutionprocedureis startedby first determiningthe
inviscidpressurefield by specifyingan initialpotentialfunctionwhich sat-
isfiesequation (5) with the right-handside set to zero. Once the # field is
established,the ur and vr fields are establishedby solvingequations (6)
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and (7)with a marching solutioninitiatedby the assumedprofile at x = I.
All the required _ derivativesin equations (6) and (7) are known functions

and are calculated_rom.the solutionof equation (5). Once the ur and vr
fieldsare found, v • Vr can be calculatedand treatedas a known source
term for the solutionof equation (5). This process is continueduntil the
continuityequation is satisfiedthroughoutthe field to some requireddegree
of tolerance;that is,

.

]rXl= l(v2_)I + (v • Vr)X[< Tolerance (I < x < _, 0 < y < _) (10)

where the superscript I refers to iterationnumber.

Transformationof MomentumEquations

Examinationof equations (6) and (7) revealsthat they need only be solved
in regionswhere the velocityhas a nonzerorotationalpart; that is, in the
viscous layer. Inmost situationsthe viscouslayer has the characteristic
that its thicknessincreasesin the streamwisedirection. For this reason, the
boundary-layerequationsare usuallytransformedinto a coordinatesystem in
which the heightof the viscous layer is approximatelyconstant. For compara-
tive purposes,a similaritytransformationis introducedin the current inves-
tigationby introducingGortler scalingon the normal coordinate.

The x-coordinateis now alined with the free-streamdirectionand the fol-
lowing new independentvariablesare introduced:

= x (11)

T]= B(_) y (12)

where

B(_) = I (13a)

if the normal coordinateis not transformed,and

B(_) = (2_)1/2 (I3b)

if the normal coordinateis transformedby Gortler scaling. In these new
variables,equations (6) and (7) become,after substitutionof equation (9),



B2CUr_xx + Vr_xy) + B2(Ur + _x)(Ur)_+ EB(Vr + _y) - Bn(Ur + _x)](Ur)n

R-] (1 + €)(Ur)D _ + B2(V2_)x

B2(UrOxy* VrOyy) * B2(Ur + Ox)(Vr)_* EB(Vr * Oy) - BD(Ur * Ox)](Vr)n

:  -]E(vr)nn.B2(V2_)y] (15)

where B = (B- I)/(2_- 1).

NumericalMethod

Solutionsto the system of equations (5), (14),and (]5),with their asso-
ciated boundaryconditions,are obtainedwith finite-differencemethods. Since
equation (5) and equations (14)and (15)are of differenttypes, the numerical
techniquesused in their solutiondiffer. Equation (5) is solved by the
successiveline overrelaxationmethod (SLOR)discussedin reference7; equa-
tions (14)and (15)are solved by using an implicitmarching technique.

Consider first the finite-differencemesh used in the solution. In all
cases, the equationsare solvedon nonuniformmeshes. StretchedCartesian
coordinatesare used in the solutionof the potentialequation (eq. (5))for
all cases, and are used in the solutionof the viscousequations(eqs. (14)
and (15))when B = 1. The generalmesh notation is indicatedin figure 2.
The nonuniformCartesianmesh is obtainedby coordinatetransformationsof
the form

AxX
x = + xo (16)

1 - _2

y = (17)

i/1_

where xo = 0 for the semi-infiniteflat-platecase and xo = Xte for the
finite flat-platecase. The actualcomputationsare carriedout in the _,9
plane with a uniformmesh. The step sizes in the x- and F-directionsare
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C

M- I

I

N- I

Xl
where C = I for the semi-infiniteplate, C = ] + for the finite

Ax2 + _12
plate, and Xl = Xte - I.

When B = (2_)1/2, differentmeshes are used in the solutionof equa-
tion (5) and equations (14)and (15). For this case, the stretchedCartesian
grid is used for equation (5),whereasthe n-coordinatein equations (14)
and (15)is stretchedusing the Roberts transformation(ref.8). This trans-
formationcan be writtenas

{1 E ]-'}= _max - Is + I)(_I-N - I) (_- 1)(_I-N + I)

where _ is a stretchingparameter. Equation (16)is still used to stretch
the x-coordinate.

Now considerthe solutionto equation (5). In the present work, equa-
tion (5) is solved for a disturbancepotentialby writing

V2¢: V2(@_+_):-_ •vr

and, since @_ is chosen such that

V2@_ = 0

then
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Now Fm and Gn are definedas

Fm = (A_)-l-
dx

With this notation,equation (18)is discretizedaccordingto

(Fxx: [(_)m+l,n- @m,n)Fm+(ll2)- (_)m,n- _)m-l,n)Fm-(I/2)]Fm (19a)

dpyy = [(dPm,n+l - dPm,n)Gn+(i/2 ) - (_m,n - (Fm,n-l)Gn-(I/2)]Gn (19b)

The boundaryconditionsare discretizedaccordingto

4Pm,l : (_m,3 (2 --<m <--M - I)

@l,n = @2,n (l < n < N)

@m,N = 0 (l _ m _ M - l)

@M,n = 0 (2 < n < N)

The discretizedrepresentationof equation (18) is solved by the SLOR procedure
with y as the implicitdirectionand with the proceduresweeping from n = 2
to n = N - I on each iterationcycle. The most recentvalues of @ are used
wheneverpossible. The Thomas algorithmis used to solve the set of implicit

tridiagonalequationsalong each line where m is constant. If rm,n isdefinedas

I(v2_)m,n + (_" _r)m,nl

ll



then convergenceis achievedwhen

I
rm,n < --(A_2+ A_2) (2 < m --<M - I, 2 < n -<-N - I)2

Now considerthe solutionof the rotational-velocity-componentmomentum
transportequations,equations (14)and (15). These equationsare parabolic
in the g-directionand hence are solved by downstreammarching from an ini-
tial profilelocatedat _ = 1. If g denoteseither ur or Vr, then
equations (14)and (15)are discretizedaccordingto

I

(gx)m,n= 2(3gm,n- 4gm-l,n+ gm-2,n)Fm (20a)

I

(gy)m,n= 2(gm,n+1- gm,n-1)Gn (20b)

(gyy)m,n = E(gm,n+1 -gm, n)Gn+(I/2) - (gm,n - gm,n-1)Gn-(]/2)_Gn (20c)

If these equationswere substituteddirectlyinto equations (14)and (15),a
set of N - 2 simultaneousnonlinearalgrebraicequationswould result along
the mth column. Thus, before discretization,equations (14)and (15)are
quasi-linearized.When f is either a ur or vr derivative,then

(fg)m,n= (fg)m,n+ (fg)m,n- (fg)m,n

where the tildesmean guessedvalues. Substitutionof these relationsinto
equations (14)and (15)yields a set of 2(N - 2) simultaneouslinear alge-
braic relations. The equationset can be completedby using the boundary
conditions

(Ur)m,1= -(#x)m,1

(Vr)m,1=-(_y)m,1
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(Ur)m,N = 0

(Vr)m,N = 0

This systemof equationsis then solvedby the Gaussianeliminationfor a
2 × 2 block tridiagonalmatrix.

Quasi-linearizationof the viscous term requiresspecialattentionin
turbulentcases. The nonlinearviscous term in equation (]4)can be written
as

BUrI B II BUr_(1 + _)BTI] : _ 1 + a(_) + b _--T]]BT]J

where a(_) is a functionof boundary-layerthickness _ and b is a con-
stant (ref. 9). The quasi-linearform is then

B I[ BUr_r]Bn I_rl2_/1 + a(_) + 2b _ b\Bq J

Bur
As can be seen, this form does not properlyquasi-linearizethe term a(_) --,

Bn
since _ is a functionof the local solution. With this form, quadraticcon-
vergence is obtainedon the column iterationsfor the laminarcases, whereas
for the turbulentcases a 20-percentdecrease in computer time over Picard
iterationis achieved.

+ +

In the solutionof equation (5), ? • Vr is treatedas a known quantity
at each mesh point. In the solutionof equations (14)and (15),however,.#
and all its requiredderivativesare treatedas known. The quantity V • Vr
is numericallyevaluatedfor each rotational-velocity-componentcalculationby
using equations (20a)and (20b). The quantities #xx and @yy are calculated
after each solutionfor # by using equations (19)along withknown values of

#%_x and @_yy. In addition,the followingrelationshipsare used to obtain

other requiredderivativesof @.

(_x)m,n: 2(_m+l,n - _m-],n)Fm + _ m,n
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(_y)m,n= 2(%Sm,n+l - @m,n-l)Gn+ ¢ m,n

(_xy)m,n= 4(_m+l,n+l- _m-l,n+l + _m-l,n-I - _m+l,n-I)FmGn + qS_x m,n

(V2_)m,n= (@xx)m,n+ (@yy)m,n

E(V2_)X]m,n= _(V2_)m+l,n - (V2@)m-l,n]Fm

E(V2_)y_m,n = _(V2@)m,n+l - (V2@)m,n-l]Gn

Since these quantitiesare requiredonly on interiormesh points,special
formulason the boundariesare not required.

It should be noted that in the actual programmingof the scheme,provision
was made for resolvingthe rotationalcomponentof velocityon a finer mesh than
the irrotationalcomponent. When B = I, this was done by breakingup the x-
and/or 9-incrementsin the computationalplane into the desiredintegernumber
of subincrements. When this provisionwas made, the derivativesof # required
in the solutionof equations (14)and (15)were linearlyinterpolatedonto the
finer grid.

When Gortler variablesare used f_r s_lutionof equations (14)and (15),
linear interpolationon both # and v • Vr is used.

RESULTS AND DISCUSSION

As discussedpreviously,three test cases were chosen for computationwith
the split Navier-Stokesformulation. These cases are the laminarand turbulent
semi-infiniteflat plate and the finite flat plate. The computerresults for
these test cases are discussedseparatelyin the followingsections.

LaminarSemi-InfiniteFlat Plate

It is well known that a singularityexists in the pressure and vorticity
at the leadingedge of a flat plate (ref.5). Rather than deal with this
problem in the current investigation,all solutionswere initiateda suffi-
cient distancedownstreamof the leadingedge such that the effectsof this
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singularitywere negligible. Accordingto reference5, at a Reynoldsnumber
based on distance from the leadingedge Rx of 104 the boundarylayer is well
describedby the Blasiusvelocityprofile. For the currentcomputations,the
free-streamconditionswere such that Rx = 104 for x = 1. The initialcom-
putationswere startedat x = I with the Blasiusvelocityprofile. This pro-
file was generatedin the program itselfby numericalsolutionsof the appro-
priate nonlinearordinarydifferentialequations (ref.10).

In order to initiatethe calculation,a choice had to be made for @_, the
basic potentialfunction. The most obviouschoice to make was

@_ = x + Constant (21)

since this representsthe undisturbedinviscidflow about a flat plate. This

choice led to imediate difficultiesin equation (Sb)since (@_)y is zero
everywhere. Use of the Blasius-predicted v in equation (Sb)would then lead
to nonzerovalues of v as y + _, which is physicallyincorrect. For this
reason, v was arbitrarilyset to zero along the initialprofilewhen this
form was chosen for _ .

A secondpossible choice for @_ is that for flow about the displacement
body presentedby the plate boundarylayer to the inviscidflow. It is well
known that the flat-platedisplacementbody is a parabolawhich has infinite
thicknessas x + _. In fact, the velocitypotentialis infiniteas y + _
for such bodies,whereas the boundaryconditionsand equation (21) indicatea
finite value for the potentialfunctionas y . _. One way to alleviatethis
difficultyis to choose the potentialfunctionfor flow about the Blasius
displacement-bodyparabola for @_; that is,

8R-1/2 y
_co-- X +

where 8 = 8B = 1.72078765 for the Blasius displacementbody (ref. 11).
Note that when 8 = 0 the uniform-streampotentialfunction is recovered.

The precedingpotentialfunctionpredicts nonzerovaluesof (@_)y along
the initialdata line; that is,

nR-li2 + Cx2+y21]i2j
/2

y =
2_ (x2 + y2)1/2
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Thus, the normal-velocityprofileon the inflowboundary is assumedto have the
followingform:

co

i_ VBlasius

Y

0 co

Normal-velocitycomponents

vr = VBlasius - (@=)y VBlasius< (@=)y

vr = _(@=)y VBlasius> (@_)y

Also, since (#_)y/ 0 along y = 0, the surfaceboundaryconditionbecomes

vr = -(_)y (y = 0, ] < x < =)

Calculationswere made for the semi-infiniteplate using these two
free-streampotentialfunctionson a mesh with 4] points in the x-direction

and 58 points in the y-direction,and with Ax = 20 and Ay = 0.22. For
the case where 8 = 8B, the calculationwas stoppedwhen the convergence
criterionwas satisfied,a total of 44 global iterations(i.e.,iterations
between eq. (5) and eqs. (]4)and (]5)). Convergencewas extremelyslow for
the 8 = 0 case, howeMer,.andthe calculationswere arbitrarilystoppedafter
200 iterationswith i_ • Vlmax = 6.48 x ]0-4 and the wall shear converged
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to four decimalplaces of accuracy. The distributionof I], the ratio of pre-
dicted wall shear to the local Blasiusvalue, along the plate is presentedin
figure 3 for these cases. As can be seen, the predictedwall shear immediately
departsfrom the Blasiusvalue in the vicinityof x = I in both solutions.
This is attributedto the arbitrarysplit of the initialvelocitydistribution
into its rotationaland irrotationalparts. For the case with 8 = 8B, the
Blasiuswall shear is quickly recoveredfurtherdown the plate,whereas the
case with 8 = 0 never recoversthe Blasius solution. This behavior is
attributedto the fact that the solutionobtainedwith 8 = 8B accountsfor
the interaction,howeverweak, betweenthe boundarylayer and inviscidflow.
The choice of 8 = 0 coupledwith the boundaryconditionas y + _ ignores
this interactionand forces the potentialfunctionto vanish as y . _. This
leadsto seriouserrors,as can be seen in figure4, in the predictionof the
normal-velocitycomponentall the way down to the wall. The conclusiondrawn
from these calculationswas that for interactioncalculationsinvolvinginfi-
nite bodies, the proper choiceof boundaryconditionsat y . _ is crucial.
No furthercalculationswere made with 8 = 0 for the semi-infiniteplate.

After establishingthe abilityof the split equationsto accurately
reproducethe Blasius solution_ith coincidentmeshes for both the pressure
(i.e., 9) and viscous (i.e., Vr) solutions,calculationswere performedwith
increasinglycoarsened (in the y-direction)pressuremeshes while holdingthe

viscousmesh constant. This was accomplishedby holding Ay the same on both
grids and successivelyhalving the numberof points in the y-directionfor the
pressure calculation. The resultingpressuregrid points all coincidedwith
viscousgrid points with an integralnumber of viscousgrid points between.
Three successivehalvingsof the numberof pressure-meshpoints were done over
the 41 × 58 mesh. The resultsof these calculationsare presentedin table I
in terms of the percent error in frictiondrag relativeto the Blasiusvalue
over the interval ] _ x S 90.]2,along with the number of iterationsto con-
vergence and computer time required. All runs were convergedto the truncation
error of the pressuremesh. Little accuracy is lost by the coarseningof the
pressuremesh, and there is a substantialsavings in computertime. The con-
vergencehistoriesof these calculationsare presentedin figure 5. Coarsening
of the pressuremesh is shown to acceleratethe overallconvergencerate.

To furtherassess the potentialof the velocity-splitformulation,addi-
tional calculationswere carriedout with entirelyindependentmeshes for the
pressure and viscouscalculationsby choosing B = (2_)_/2. This allowedthe
numberof viscousmesh points in the boundary layer to be held constant at
about 40 points over the entire lengthof the plate. In this case, the viscous

grid was again held fixed and Ay was varied. Resultsof these calculations
are presentedin table 2. In thls table, the ratio of the pressure-meshincre-
ment to the viscousmesh incrementat the wall is used as a measure of the grid
coarsening. It should be noted that in the solutionsfor mesh ratios of 32.90

and 65.79 (Ay = 3.52 and 7.04) the global iterationhad to be underrelaxedin
order to achmeveconvergence. The reason for the deteriorationof the solution

accuracyon the coarserpressuregrids is obviousfrom figure 6. In this fig-
ure, the distributionof V Vr across the boundarylayer is plotted
along with the locationof both the viscous and pressure-meshpoints. As can
be seen, when the pressuregr_d i§ coarsenedto the point that it can no longer
resolvethe distributionof V • Vr, seriousdeteriorationin accuracy
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occurs. Also presentedin table 2 are the error in the local wall shear at
x = 33.33 and the number of pressure-meshpoints in the boundarylayer. These
data can be interpretedas a first-orderestimateof the number of pressure
mesh points that are requiredin the boundarylayer to give adequateresolu-
tion. From table 2 it can be seen that between5 and 10 pressure-meshpoints
are requiredwithin the boundarylayer to accuratelypredictthe local wall
shear.

TurbulentSemi-InfiniteFlat Plate

The semi-infiniteplate was also run for the turbulentcase. In this
case, the value of Rx was 1.0 × 106 at x = 1.0. The solutionwas started
from the Blasiussolutionat x = 1.0, and instantaneoustransitionwas arbi-
trarilyintroducedat x = 2.44 (m = 4). For this case the value of 8 was
the laminarvalue since the exact potential-flowsolutionabout the turbulent
displacementbody was not known.

The distributionof skin frictionalong the plate is compared in figure 7
with the Prandtl-Schlichtingformulafor a smooth flat plate (ref.10). For
the cases shown the grid was definedby the followingparameters:

Viscous Inviscid

M = 41 M = 41

N = 54 N = 61

e = 2048 Ay = 0.2, 0.3, 0.4

_€ = 0.08 Ax = 20

Ax = 20

The solutionsfor the three values of Ay cannot be differentiatedon
the scale of figure 7. For values of Ay > 0.4, however,the solutions
divergedwhile values of Ay < 0.2 left too few points outsidethe boundary
layer on the inviscidmesh, and hence were not run. The three cases of

3_ = 0.2, 0.3, and 0.4 took 17, 15, and 54 global iterationsrequiring35,, and 102 seconds,respectively,on the ControlData CYBER 175 computer to
achieveconvergence.

The turbulentcase thus appearssomewhatmore sensitiveto the resolution
of the boundarylayer by the pressurecalculationthan the laminarcase. For

the case of Ay = 0.4, the first pressuregrid point off the wall corresponds
to y/_ = 0.37 at x = 2.44, the first turbulentprofile. For the turbulent
case, resolutioncoarser than this leads to divergentsolutionsrather than
inaccuratesolutionsas in the laminar case. On the other hand, these results
show that the pressuregrid does not have to resolvethe detailsof the turbu-
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lent boundarylayer near the wall in order to produceaccurateresults,pro-
vided the viscousmesh is fine enough.

In view of the resultsfor the laminarcase, the apparentaccuracyof the
turbulentcalculationsis surprisingsince the basic potentialfunctiondoes
not properly accountfor the decay of the normal componentof velocityas
y . _. It should first be noted, however,that the predictedsolutionin
figure 7 does begin to depart from the data curve fit at the higher values of
Rx and examinationof the normal-velocityprofiles in this vicinitydoes show
some small negativevalues near the wall. Secondly,the values predictedby
any finite-differenceprogramof this type depend upon the transitionhistory
and turbulencemodel employed. Thus, for this case an exact solution is not
availablefor comparison,as in the laminarcase. Hence, a direct quantitative
error estimateis not possible. In addition,it can be seen from figure 7 that
the predictedvaluesof skin frictionare in error in the laminarregion. This
error is attributedto the upstreaminfluenceof the transitionregion through
the pressure calculation.

It should finallybe noted that for turbulentcalculationsthe Newton
iterationin the viscousmarching-columnsolutiondid not convergequadrati-
cally. This is in agreementwith the resultsof reference9.

Finite Flat Plate

The third problemchosen for solution in the currentinvestigationis the
laminarfinite flat plate for R = 5 x 104. In this problem, a singularity
exists at the trailingedge of the plate due to the discontinuousboundarycon-
dition. Calculationswere made with the presentmethod using coincidentpres-
sure and viscousmeshes with 8 = 0. Results of these calculationsare shown
in figures8 to 10. In these figures,the followingtriple-deckscaledquanti-
ties are presented:

15/4(x - Xte)
X=

_3Xte

U
U =

Ell/4

P - Poo
p =

1
_ €2_1/2
2

€ = R-I/8 (_= 0.33206)
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These resultsare comparedwith the triple-decktheory solutionsof Melnik
and Chow (ref. 12) and Jobe and Burggraf (ref.13). Figure 8 presents the
wall/centerlinepressure distributionin the vicinityof the trailingedge,
figure 9 the wall shear, and figure 10 the wake centerlinevelocitydistribu-
tion. Agreementbetweenthe presentcalculationsand triple-decktheory is
excellent. The better agreementbetween the present resultsand those of
reference13 is attributedto the fact that the resultsof reference12 were
calculatedon a much finer grid than that used in either the currentcalcula-
tions or those of reference13. Additionalcalculationswere made with the
pressure solutionobtainedon every second and fourth viscousmesh point with
no plottabledifferencein the results. The calculationsrequired75 seconds
of CYBER 175 time for the coincidentmesh case, whereas the two coarsergrid
calculationsrequired50 and 39 seconds,respectively.

CONCLUDINGREMARKS

It is concludedfrom the currentinvestigationthat the split-velocity
Navier-Stokesformulationcan be used to obtain accuratesolutionsto the
Navier-Stokesequationsfor finite and semi-infiniteflat plates. Resultsof
the pressure-meshcoarseningstudiescarriedout in this investigationalso
indicatethat the method can be used to retrofita viscouscapabilityinto
existingpotential-flowcodes. In order to retrofitsuch a capability,how-
ever, care must be taken to adequatelyresolvethe viscous layer with the pres-
sure grid. Since existingpotential-flowcomputerprogramshave computational
grids selected to resolvepurely inviscidphenomena,only in specialcases can
the retrofitbe made without alteringthe grid. For the commonlyused numeri-
cal schemes in modern potential-flowprograms,the introductionof a known
functionon the right-handside of the potentialequationposes no difficulty.

For the problems studiedin the currentinvestigation,the computational
efficiencyof the method appearsunaffectedby Reynolds number. The reason
is that in any given calculationthe bulk of the computationaleffort (about
80 percent) is in the viscousmarching calculation. In this portionof the
calculation,the effect of Reynolds number is accountedfor by scalingthe
viscousgrid. Hence, the total computationtime for a given viscousmarching
sweep is unaffectedby Reynoldsnumber. Finer resolutionof the viscousregion
by the pressuregrid at higher Reynoldsnumber does slow this portionof the
calculationdown but has little effect on the overall computationtime. For
this reason,the method appearspromisingfor calculatingsteady,high Reynolds
number,external flows.

LangleyResearchCenter
NationalAeronauticsand Space Administration
Hampton,VA 23665
March 18, 1980
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TABLE I.- EFFECT OF PRESSURE-MESHCOARSENINGON

OVERALLSOLUTIONACCURACY FOR RELATEDMESHES

Number of Percenterror CYBER 175
y-points in friction I time,
(pressure) drag sec

58 -0.50 45 47
30 -I.40 25 20
16 3.70 12 8
9 3.73 9 6

TABLE 2.- EFFECT OF PRESSURE-MESHCOARSENINGON

SOLUTIONACCURACY FOR INDEPENDENTMESHES

x = 33.33
Wall mesh Percenterror in
ratio frictiondrag Number of y-points in

boundary layer (pressure) _I

2.06 -0.49 46 0.998
4.11 -.70 32 .996
8.23 -.16 19 .998
]6.45 2.46 10 ].029
32.90 13.4 5 ].142
65.79 23.0 3 I.327
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